
Windows Help provides a complete set of functions necessary to display and
navigate Help files or other hypertext documents. In addition to the standard
functionality described in this guide, Windows Help includes a set of 56 custom
commands, or macros, that let Help authors control and customize Help
functionality.

This chapter describes the standard Help macros that you can use to customize
the way Help works with your Help file. For information on the rules for

constructing and using macros, see Chapter 14, “Help Macros.”

This section lists all macros in alphabetic order and contains complete
information on each macro. Macro descriptions provide the following
information.

Heading Information

Syntax Syntax for each macro. The table following the syntax describes the
parameters that the macro requires. For information about the
typographic conventions used in syntax descriptions, see the
“Document Conventions” section in the Introduction to this guide.

Example Example of the macro.

Comments Notes about using the macro, including any restrictions.

See Also Cross-references to other Help macros with similar functionality.

Help Macro Reference

___ Chapter 15

Macro Reference

 Microsoft Windows Help Authoring Guide

About
Displays the About dialog box. Executing this macro is the same as choosing the

About command on the Help menu.

About()

Parameter Description

none

AddAccelerator (or AA)
Assigns an accelerator (keyboard access) key or key combination to a Help
macro so that the user can execute the macro simply by pressing the accelerator

key(s).

AddAccelerator(key, shift-state, "macro")
AA(key, shift-state, "macro")

Parameter Description

key Windows virtual-key value of the accelerator key the user must

Syntax

Syntax

Help Macro Reference§ 15-3

press to execute the macro. For the list of virtual keys, see
Appendix A, “Windows Virtual-Key Codes.”

shift-state Number specifying the key or key combination to use with the
accelerator key. Valid modifier keys are ALT, SHIFT, and CTRL.

Number Modifier key(s)

0 (No modifier key)

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 ALT+SHIFT+CTRL

macro Help macro or macro string that executes when the user presses
the accelerator key(s). The macro must be enclosed in quotation
marks. Separate multiple macros in a string with semicolons (;).

The following macro assigns a key combination to the JumpID macro so that the
user can display an alphabetic index of Help topics by pressing ALT+CTRL+F10:

AddAccelerator(0x79, 6, "JumpID(`index.hlp', `cont_idx')")

The Help macro that AddAccelerator executes might not work in secondary
windows, or its use may not be recommended if the macro it executes is
prohibited or not recommended in secondary windows. Check the macro’s
“Comments” section before using AddAccelerator to execute it in a secondary
window.

Example

Comments

 Microsoft Windows Help Authoring Guide

RemoveAccelerator

Annotate
Displays the Annotate dialog box. Executing this macro is the same as choosing

the Annotate command on the Edit menu.

Annotate()

Parameter Description

none

If the Annotate macro executes from a pop-up window, the annotation is
attached to the topic that contains the pop-up hot spot (parent topic) rather than to
the topic displayed in the pop-up window.

AppendItem

Appends a menu item to the end of a menu created with the InsertMenu macro.

AppendItem("menu-id", "item-id", "item-name", "macro")

See Also

Syntax

Comments

Syntax

Help Macro Reference§ 15-5
Parameter Description

menu-id Name used in the InsertMenu macro to create the menu. This
name must be enclosed in quotation marks. The new item is
appended to this menu.

item-id Name that Windows Help uses internally to identify the menu
item. This name is case sensitive and must be enclosed in
quotation marks.

item-name Name that Windows Help displays on the menu for the item. This
name is case sensitive and must be enclosed in quotation marks.
Within the quotation marks, place an ampersand (&) before the
character you want to use for the macro’s accelerator key.

macro Help macro or macro string that executes when the user chooses
the menu item. The macro must be enclosed in quotation marks.
Separate multiple macros in a string with semicolons (;).

The following macro appends a menu item labeled Example to a View menu
identified by the “mnu_view” context string:
AppendItem("mnu_view", "mnu_example", "E&xample", "JI(`charts.hlp',
`eg_012_topic')")

Choosing the menu item causes a jump to a topic with the “eg_012_topic”
context string in the CHARTS.HLP file. Note that the letter x serves as the

accelerator key for this menu item.

Be sure that the accelerator key you assign to a menu item is unique. If you
assign a key that conflicts with another menu access key, Windows Help displays
an “Unable to add item” error message and ignores the macro.

Example

Comments

 Microsoft Windows Help Authoring Guide

Windows Help ignores this macro if it is executed in a secondary window.

ChangeItemBinding, CheckItem, DeleteItem, DisableItem, EnableItem,
InsertItem, InsertMenu, UncheckItem

Back
Displays the previous topic in the Back list. (The Back list is an internal
mechanism that tracks all the topics the user has displayed since starting

Windows Help.)

Back()

Parameter Description

none

If the Back macro is executed when the Back list is empty, Windows Help takes
no action.

Windows Help ignores this macro if it is executed in a secondary window.

History

See Also

Syntax

Comments

See Also

Help Macro Reference§ 15-7BookmarkDefine
Displays the Bookmark Define dialog box. Executing this macro is the same as

choosing the Define command on the Bookmark menu.

BookmarkDefine()

Parameter Description

none

If the BookmarkDefine macro executes from a pop-up window, the bookmark is
attached to the topic that contains the pop-up hot spot (parent topic) rather than to
the topic that is displayed in the pop-up window.

BookmarkMore
Displays the Bookmark dialog box. Executing this macro is the same as choosing
the More command on the Bookmark menu.

Note

The More command appears on the Bookmark menu if the user

defines more than nine bookmarks.
BookmarkMore()

Syntax

Comments

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

none

If this macro is executed in a secondary window, Help displays the bookmarked
topic in the secondary window, regardless of where the topic appeared when the
user set the bookmark. For that reason, using this macro in secondary windows is
not recommended.

BrowseButtons

Adds browse buttons (<< and >>) to the button bar in Windows Help.

BrowseButtons()

Parameter Description

none

If the BrowseButtons macro is used with one or more CreateButton macros in
the [CONFIG] section of the Help project file, the left-to-right order of the
browse buttons on the Windows Help button bar is determined by the top-down

Comments

Syntax

Comments

Help Macro Reference§ 15-9

order of the BrowseButtons macro in relation to the other macros listed in the
[CONFIG] section. For example, the following [CONFIG] section tells Help to
add the Browse buttons between a Clock button and an Exit button:
[CONFIG]
CreateButton("btn_time", "&Clock", "ExecProgram(`clock', 0)")
BrowseButtons()
CreateButton("btn_close", "E&xit", "Exit()")

Depending on how it’s used, the BrowseButtons macro may interfere with the
DisableButton macro. See DisableButton for details.

Windows Help ignores this macro if it is executed in a secondary window.

CreateButton, DisableButton

ChangeButtonBinding (or CBB)
Changes the assigned function of a button on the Windows Help button bar. You
can change the function of the standard Help buttons or any button created with

the CreateButton macro.

ChangeButtonBinding("button-id", "button-macro")
CBB("button-id", "button-macro")

See Also

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

button-id Identifier assigned to the button in the CreateButton macro, or
one of the following standard Help button IDs:

Button ID Button

btn_contents Contents
btn_search Search
btn_back Back
btn_history History
btn_previous Browse previous (<<)
btn_next Browse next (>>)
The button ID must be enclosed in quotation marks.

button-macro Help macro that executes when the user chooses the button. The
macro must be enclosed in quotation marks.

The following macro changes the function of the Contents button so that choosing
it causes a jump to the Table of Contents topic (identified by the “dict_contents”
context string) in the DICT.HLP file:

ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', `dict_contents')")

Windows Help ignores this macro if it is executed in a secondary window.

CreateButton, DestroyButton, DisableButton, EnableButton

Example

Comments

See Also

Help Macro Reference§ 15-11ChangeItemBinding (or CIB)
Changes the assigned function of a menu item added to a Windows Help menu
with the AppendItem macro. This macro can also change the function of one

(and only one) standard Help menu item: How To Use Help.

ChangeItemBinding("item-id", "item-macro")
CIB("item-id", "item-macro")

Parameter Description

item-id Identifier assigned to the item in the AppendItem macro, or, for
the standard How To Use Help menu item, use “mnu_helpon” as
the identifier. The item ID must be enclosed in quotation marks.

item-macro Help macro that executes when the user chooses the item. The
macro must be enclosed in quotation marks.

The following macro changes the menu item identified by “time_item” so that it
starts the Clock application:
ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

The following macro changes the How To Use Help menu item so that it opens
the Contents topic of a custom Help file:

ChangeItemBinding("mnu_helpon", "JumpContents(`hlpbasic.hlp')")

Use the DeleteItem macro to remove the standard How To Use Help item from
the Help menu. Use the SetHelpOnFile macro to specify the custom How To

Syntax

Example

Comments

 Microsoft Windows Help Authoring Guide

Use Help file you want to use. Then use the InsertItem macro to place the new
menu item on the Help menu.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, CheckItem, DeleteItem, DisableItem, EnableItem, InsertItem,
InsertMenu, SetHelpOnFile, UncheckItem

CheckItem (or CI)
Displays a check mark next to a menu item added to a Windows Help menu with
the AppendItem macro. The check mark indicates the state of a toggle-type

command: on or off, show or hide, and so on.

CheckItem("item-id")
CI("item-id")

Parameter Description

item-id Identifier assigned to the item in the AppendItem macro. The
item ID must be enclosed in quotation marks.

The following macro checks the menu item identified by “time_item”:
CheckItem("time_item")

See Also

Syntax

Example

Help Macro Reference§ 15-13

To clear the check mark from the item, use the
UncheckItem macro.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, DeleteItem, DisableItem, EnableItem,
InsertItem, InsertMenu, UncheckItem

CloseWindow

Closes either the main Help window or a secondary window.

CloseWindow("window-name")

Parameter Description

window-name Name of the window to close. The name “main” is reserved for
the primary Help window. For secondary windows, the window
name is defined in the [WINDOWS] section of the Help project
file. This name must be enclosed in quotation marks.

The following macro closes the “index” secondary window:

CloseWindow("index")

If the window does not exist, Windows Help ignores the macro.

Comments

See Also

Syntax

Example

Comments

 Microsoft Windows Help Authoring Guide

Exit

Contents
Displays the Contents topic of the Help file that executes the macro. The
Contents topic is defined by the CONTENTS option in the [OPTIONS] section

of the Help project file.

Contents()

Parameter Description

none

If the Help project file does not have a CONTENTS option, Help displays the
first topic in the first RTF file specified in the [FILES] section of the Help project
file.

Windows Help ignores this macro if it is executed in a secondary window.

JumpContents, SetContents

See Also

Syntax

Comments

See Also

Help Macro Reference§ 15-15CopyDialog
Displays the Copy dialog box and places the text from the current topic in the
copy box where the user can select a portion to copy to the Clipboard. Executing

this macro is the same as choosing the Copy command on the Edit menu.

CopyDialog()

Parameter Description

none

If the CopyDialog macro executes from a pop-up window, the text from the topic
that contains the macro hot spot (parent topic) is copied to the Copy dialog box
rather than the text that is displayed in the pop-up window.

Using this macro in secondary windows is highly recommended because it is the
only way that a user can copy the text displayed in a secondary window.

CopyTopic
Copies all the text in the currently displayed topic to the Clipboard. Executing

this macro is the same as pressing CTRL+INS in the main Help window.

CopyTopic()

Syntax

Comments

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

none

This macro does not copy bitmaps or any other images in the Help topic, only
text.

If the CopyTopic macro executes from a pop-up window, the text from the topic
that contains the macro hot spot (parent topic) is copied to the Clipboard rather
than the text that is displayed in the pop-up window.

Using this macro in secondary windows is highly recommended because it is the
only way that a user can copy the text displayed in a secondary window.

CreateButton (or CB)

Creates a new button and adds it to the Windows Help button bar.

CreateButton("button-id", "name", "macro")
CB("button-id", "name", "macro")

Parameter Description

button-id Name that Windows Help uses internally to identify the button.
This name must be enclosed in quotation marks.

name Text that appears on the button. This name must be enclosed in

Comments

Syntax

Help Macro Reference§ 15-17

quotation marks. Within the quotation marks, place an ampersand
(&) before the character you want to use for the button’s
accelerator key. The button name is case sensitive and can have as
many as 29 characters–after which Help ignores any additional
characters.

macro Help macro or macro string that executes when the user chooses
the button. The macro must be enclosed in quotation marks.
Separate multiple macros in a string with semicolons (;).

The following macro creates a new button labeled Ideas that, when chosen, jumps
to a topic with the “directory” context string in the IDEAS.HLP file:
CreateButton("btn_ideas", "&Ideas", "JumpId(`ideas.hlp', `directory')")

Notice that the letter I serves as the button’s accelerator key.

Windows Help allows a maximum of 16 author-defined buttons on the button bar,
making a total of 22 buttons, including the Browse buttons. However, designing a
button bar with more than seven to nine buttons may cause usability problems.

If more than one button is created with the CreateButton and BrowseButtons
macros in the [CONFIG] section of the Help project file, the left-to-right order of
the added buttons on the Windows Help button bar is determined by the top-down
order of the macros listed in the [CONFIG] section. For example, the following
[CONFIG] section adds a Clock button, then the Browse buttons, and then an
Exit button to the right of the standard Help buttons:
[CONFIG]
CreateButton("btn_time", "&Clock", "ExecProgram(`clock', 0)")
BrowseButtons()
CreateButton("btn_close", "E&xit", "Exit()")

Example

Comments

 Microsoft Windows Help Authoring Guide

Windows Help ignores this macro if it is executed in a secondary window.

BrowseButtons, ChangeButtonBinding, DestroyButton, DisableButton,
EnableButton

DeleteItem

Removes a menu item added with the AppendItem macro.

DeleteItem("item-id")

Parameter Description

item-id Item identifier string used in the AppendItem macro. The item ID
must be enclosed in quotation marks.

The following macro removes the Example menu item that was created in the
example for the AppendItem macro:

Windows Help ignores this macro if it is executed in a
secondary window.

AppendItem, ChangeItemBinding, CheckItem,
DisableItem, EnableItem, InsertItem, InsertMenu,

UncheckItem

See Also

Syntax

Example

Comments

See Also

Help Macro Reference§ 15-19DeleteMark

Removes a text marker added with the SaveMark macro.

DeleteMark("marker-text")

Parameter Description

marker-text Text marker previously added by the SaveMark macro. The
marker text must be enclosed in quotation marks.

The following macro removes the Managing Memory marker from a Help file:

DeleteMark("Managing Memory")

If the marker does not exist when the DeleteMark macro is executed, Windows

Help displays a “Topic not found” error message.

GotoMark, IfThen, IfThenElse, IsMark, Not, SaveMark

DestroyButton
Removes a button added with the CreateButton macro.

Syntax

Example

Comments

See Also

 Microsoft Windows Help Authoring Guide

DestroyButton("button-id")

Parameter Description

button-id Identifier assigned to the button in the CreateButton macro. The
button ID must be enclosed in quotation marks.

The following macro removes the Ideas button that was created in the example
for the CreateButton macro:

DestroyButton("btn_ideas")

You cannot use this macro to remove a standard Help button: Contents, Search,
Back, or History. Therefore, the button identifier cannot be the same as an
identifier used for the standard Help buttons. (The standard Help button
identifiers are listed in the ChangeButtonBinding macro.)

Windows Help ignores this macro if it is executed in a secondary window.

ChangeButtonBinding, CreateButton, DisableButton, EnableButton

DisableButton (or DB)
Disables and greys out a button added with the CreateButton macro.

Syntax

Example

Comments

See Also

Help Macro Reference§ 15-21

DisableButton("button-id")

DB("button-id")

Parameter Description

button-id Identifier assigned to the button in the CreateButton macro. The
button ID must be enclosed in quotation marks.

The following macro disables the Ideas button that was created in the example for
the CreateButton macro:

DisableButton("btn_ideas")

You cannot use this macro to disable a button in a topic until the button has been
enabled using the EnableButton macro.
If you use this macro to disable a standard Help button (Contents, Search, Back,
or History), the user’s next action may reactivate the button. For example, when
the user displays a new topic, the History and Back buttons will become enabled.
Also, each time the history list is updated, Help refreshes the History button. The
Contents and Search buttons remain disabled until the user chooses an interfile
jump or executes an EnableButton macro.
When the BrowseButtons macro is used with one or more DisableButton
macros, it may interfere with the results of the DisableButton macro. When it
follows the DisableButton macros, the BrowseButtons macro forces the
standard buttons to refresh, creating the same effect as if the DisableButton
macro had failed. The order in the following example causes the standard buttons
to be enabled rather than disabled:
[CONFIG]
DisableButton("btn_contents")
DisableButton("btn_search")
DisableButton("btn_back")
DisableButton("btn_history")
BrowseButtons()

Syntax

Example

Comments

 Microsoft Windows Help Authoring Guide

To ensure that the DisableButton macro works as you intend it to, place the
BrowseButtons macro first in the order:
[CONFIG]
BrowseButtons()
DisableButton("btn_contents")
DisableButton("btn_search")
DisableButton("btn_back")
DisableButton("btn_history")

You can also disable the Search button in a Help file by not assigning any
keywords to the topics.

Windows Help ignores this macro if it is executed in a secondary window.

BrowseButtons, ChangeButtonBinding, CreateButton, DestroyButton,
EnableButton

DisableItem (or DI)

Disables and greys out a menu item added with the AppendItem macro.

DisableItem("item-id")

DI("item-id")

See Also

Syntax

Help Macro Reference§ 15-23
Parameter Description

item-id Identifier assigned to the menu item in the AppendItem macro.
The item ID must be enclosed in quotation marks.

The following macro disables the Example marker that was created in the
AppendItem macro example:

DisableItem("mnu_example")

You cannot use this macro to disable a menu item in a topic until the item has
been enabled using the EnableItem macro.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, CheckItem, DeleteItem, EnableItem,
InsertItem, InsertMenu, UncheckItem

EnableButton (or EB)

Re-enables a button disabled with the DisableButton macro.

EnableButton("button-id")
EB("button-id")

Example

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

button-id Identifier assigned to the button in the CreateButton macro. The
button ID must be enclosed in quotation marks.

The following macro re-enables the Ideas button that was disabled in the
DisableButton macro example:

EnableButton("btn_ideas")

If you use this macro to enable a standard Windows Help button (Contents,
Search, Back, or History), the user’s next action may disable the button. For
example, if you enable the Contents button in one topic, it may be disabled again
when the user jumps to a different topic.

Windows Help ignores this macro if it is executed in a secondary window.

ChangeButtonBinding, CreateButton, DestroyButton, DisableButton

EnableItem (or EI)

Re-enables a menu item disabled with the DisableItem macro.

EnableItem("item-id")

Example

Comments

See Also

Syntax

Help Macro Reference§ 15-25

EI("item-id")

Parameter Description

item-id Identifier assigned to the menu item in the AppendItem macro.
The item ID must be enclosed in quotation marks.

The following macro enables the Example menu item that was disabled in the
DisableItem macro example:

EnableItem("mnu_example")

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem,
InsertItem, InsertMenu, UncheckItem

ExecProgram (or EP)

Starts an application.

ExecProgram("command-line", display-state)
EP("command-line", display-state)

Example

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

command-line Command line for the application to be started. The command line
must be enclosed in quotation marks.

display-state Specifies a value indicating how the application is shown when
started.

Value Display

0 Normal

1 Minimized

2 Maximized

The following macro runs the Clock program in its normal window size:

ExecProgram("clock.exe", 0)

When using this macro to start an application, Windows Help searches for the
application in this order: the current directory, the Windows directory, the
Windows SYSTEM directory, the user’s path, and then the directory of the
currently displayed Help file.

The ExecProgram macro does not change the directory before starting an
application, so if you need to set the working directory for the application so that
Help can find the correct files, you must create your own custom DLL.

If your application includes an online tutorial, you can use the ExecProgram
macro to create hot spots within the Help file that link to tutorial lessons. For
example, the following macro starts the TUTOR.EXE tutorial application
(located in the LESSONS subdirectory) and displays the Toolbox lesson in a
maximized window:
ExecProgram("c:\\lessons\\tutor.exe toolbox.cbt", 2)

Example

Comments

Help Macro Reference§ 15-27

The ExecProgram macro converts display-state values into the appropriate
ShowWindow values. However, some applications may ignore the display-state
you specify (because they ignore the nCmdShow parameter). For example, some
tutorial applications may operate only in a maximized window; therefore, the
value you specify in the display-state parameter may or may not work. To test
whether an application ignores these values, hold down the SHIFT key while
double-clicking the application’s icon in Program Manager. If the application
starts minimized, it will probably accept the value you specify. If the application
starts in any other state, it will ignore the display-state value.

If you must use quotation marks as part of the command-line parameter, you can
enclose the entire parameter in single quotation marks and omit the backslash
escape character required for the double quotation marks delimiting the string, as
shown in this example:
ExecProgram(`command "string as parameter"', 0)

Exit
Exits the Windows Help application. Executing this macro is the same as

choosing the Exit command on the File menu.

Exit()

Parameter Description

none

Executing this macro will close any secondary windows associated with the open
Help file.

Syntax

Comments

 Microsoft Windows Help Authoring Guide

CloseWindow

FileOpen
Displays the Open dialog box. Executing this macro is the same as choosing the

Open command on the File menu.

FileOpen()

Parameter Description

none

Using this macro in secondary windows is not recommended because the Help
file may be displayed in the secondary window, leaving the user without Help
menus and navigation buttons. (Help authors can ensure that their Help file is
opened in the main window, but there is no guarantee that all Help files have
done this.)

FocusWindow
Changes the focus to the specified window, either the main Help window or a
secondary window.

See Also

Syntax

Comments

Help Macro Reference§ 15-29

FocusWindow("window-name")

Parameter Description

window-name Name of the window to receive the focus. The name “main” is
reserved for the primary Help window. Secondary window names
are defined in the [WINDOWS] section of the Help project file.
This name must be enclosed in quotation marks.

The following macro changes the focus to the “keys” secondary window:

FocusWindow("keys")

If the window does not exist, Windows Help ignores the macro.

CloseWindow, PositionWindow

GotoMark

Jumps to a marker set with the SaveMark macro.

GotoMark("marker-text")

Syntax

Example

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

marker-text Text marker previously defined by the SaveMark macro. The
marker text must be enclosed in quotation marks.

The following macro jumps to the Managing Memory marker:

GotoMark("Managing Memory")

If the GotoMark macro specifies a marker that has not been previously defined
by the SaveMark macro, Windows Help displays a “Topic not found” error

message.

DeleteMark, IfThen, IfThenElse, IsMark, Not, SaveMark

HelpOn
Displays the How To Use Help file for the Windows Help application. Executing
this macro is the same as choosing the How To Use Help command on the Help

menu.

HelpOn()

Example

Comments

See Also

Syntax

Help Macro Reference§ 15-31
Parameter Description

none

If you replace the default How To Use Help file (WINHELP.HLP) with a custom
version using the SetHelpOnFile macro, executing this macro will display the

custom version of How To Use Help.

SetHelpOnFile

HelpOnTop
Changes the state of all Help windows to “on-top.” An on-top window appears
visually on top of other application windows, except certain windows that may
also use the topmost window attribute, such as the Windows Task Manager.
Executing this macro is the same as choosing the Always On Top command on

the Help menu.

HelpOnTop()

Parameter Description

none

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide

Microsoft does not recommend executing this macro in the main Help window.
Instead use the on-top attribute when defining secondary windows. For complete
information about creating secondary windows with the on-top attribute, see
Chapter 9, “Defining Topic Windows.”

Windows Help does not provide a macro to check the current state of the Always
On Top command and place a check mark next to the command when the state
has changed to on-top. Therefore, it is up to Help authors to decide whether they
want to use a macro to change the state of the command on the menu.

History
Displays the history list, which shows the last 40 topics the user has viewed since
opening a Help file. Executing this macro is the same as choosing the History

button.

History()

Parameter Description

none

Comments

Syntax

Help Macro Reference§ 15-33

Windows Help ignores this macro if it is executed in a
secondary window.

Back

IfThen
Executes a Help macro if a given marker exists. It uses the IsMark macro to

make the test. You can also use a DLL function as a condition for this macro.

IfThen(IsMark("marker-text"), "macro")

Parameter Description

marker-text Text marker previously created by the SaveMark macro. The
IsMark macro tests the marker you specify. If the marker value
that the test returns is zero, the macro does not execute. If the
value is something other than zero, the macro executes. The
marker text must be enclosed in quotation marks.

macro Help macro or macro string that executes if the marker exists. The
macro must be enclosed in quotation marks. Separate multiple
macros in a string with semicolons (;).

The following macro jumps to the topic with the “man_mem” context string if the
SaveMark macro has set a marker named Managing Memory:
IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")

Comments

See Also

Syntax

Example

 Microsoft Windows Help Authoring Guide

You can use the IfThen macro to create many custom
effects in your Help file. For example, you can use it to add
a button to some topics and not have it appear in other

topics. In the topic(s) where you want the button to appear, you create a macro
footnote with the following sample macro string:
IfThen(Not(IsMark(`B')), "SaveMark(`B') : CreateButton(`misc_btn', `&Test',
`JumpContents(`pmcd.hlp')')")

In the topics where you don’t want the button to appear, you create a macro
footnote with this macro string:
IfThen(IsMark(`B'), "DeleteMark(`B') : DestroyButton(`misc_btn')")

If a topic does not have this footnote, it will have the same button characteristics

as the previously viewed topic.

DeleteMark, GotoMark, IfThenElse, IsMark, Not, SaveMark

IfThenElse
Executes one of two Help macros depending on whether a marker exists. It uses
the IsMark macro to make the test. You can also use a DLL function as a

condition for this macro.

IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameter Description

marker-text Text marker previously created by the SaveMark macro. The
IsMark macro tests the marker you specify. The marker text must
be enclosed in quotation marks.

macro1 Windows Help executes macro1 if the test returns a nonzero
marker value. This macro must be enclosed in quotation marks.

Comments

See Also

Syntax

Help Macro Reference§ 15-35

Separate multiple macros in the string with semicolons (;).

macro2 Windows Help executes macro2 if the test returns a marker value
of zero. This macro must be enclosed in quotation marks. Separate
multiple macros in the string with semicolons (;).

The following macro jumps to the topic with the “man_mem” context string if the
SaveMark macro has set a marker named Managing Memory. If the marker does
not exist, the macro jumps to the Contents topic in the TRB.HLP file:
IfThenElse(IsMark("Managing Memory"), "JumpID(`trb.hlp', `man_mem')",

"JumpContents(`trb.hlp')")

DeleteMark, GotoMark, IfThen, IsMark, Not, SaveMark

InsertItem
Inserts a menu item at a given position on an existing menu. The menu can be one

you create with the InsertMenu macro or a standard Windows Help menu.

InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameter Description

menu-id Name used in the InsertMenu macro to create the menu or the
name of a standard Windows Help menu. Standard menu names
and identifiers are:

Name Identifier

Example

See Also

Syntax

 Microsoft Windows Help Authoring Guide

File mnu_file

Edit mnu_edit

Bookmark mnu_bookmark

Help mnu_helpon

The menu ID must be enclosed in quotation marks.

item-id Name that Windows Help uses internally to identify the menu
item. The item ID must be enclosed in quotation marks.

item-name Name that Windows Help displays on the menu for the item. This
name is case sensitive and must be enclosed in quotation marks.
Within the quotation marks, place an ampersand (&) before the
character you want to use for the item’s accelerator key.

macro Help macro or macro string that executes when the user chooses
the menu item. The macro must be enclosed in quotation marks.
Separate multiple macros in a string with semicolons (;).

position Number specifying the position in the menu where the new item
will appear. The number must be an integer. Position 0 is the first
or topmost position in the menu.

The following macro inserts a menu item labeled Example as the fourth item on a
View menu that has a “mnu_view” identifier:

InsertItem("mnu_view", "mnu_example", "E&xample", "JI(`charts.hlp', `eg_012_topic')", 3)

Choosing the menu item causes a jump to a topic with the “eg_012_topic”
context string in the CHARTS.HLP file. Note that the letter x serves as the item’s

accelerator key.

Be sure that the access key you assign to a menu item is unique. If you assign a

Example

Comments

Help Macro Reference§ 15-37

key that conflicts with another menu accelerator key, Windows Help displays the
“Unable to add item” error message and ignores the macro.

The item-id parameter defined in this macro can be used in other menu item
macros to modify the menu item, such as disable it or change its macro function.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem,
EnableItem, InsertMenu, UncheckItem

InsertMenu

Adds a new menu to the Windows Help menu bar.

InsertMenu("menu-id", "menu-name", menu-position)

Parameter Description

menu-id Name that Windows Help uses internally to identify the menu.
The menu ID must be enclosed in quotation marks. Use this
identifier in the AppendItem macro to add menu items
(commands) to the menu.

menu-name Name for the menu that Windows Help displays on the menu bar.
This name is case sensitive and must be enclosed in quotation
marks. Within the quotation marks, place an ampersand (&)
before the character you want to use for the menu’s accelerator
key.

menu-position Number specifying the position on the menu bar that the new
menu name will have. This number must be an integer. Positions
are numbered from left to right, with position 0 being the leftmost

See Also

Syntax

 Microsoft Windows Help Authoring Guide

menu.

The following macro adds a menu named Utilities to Windows Help:
InsertMenu("menu_util", "&Utilities", 3)

Utilities appears as the fourth menu on the Windows Help menu bar, between the

Bookmark and Help menus. The user presses ALT+u to open the menu.

When adding menus, remember that The Windows Interface: An Application
Design Guide requires that the File and Edit menus be the first two menus and
that the Help menu be the last menu on the menu bar. Therefore, add new menus
between the Edit menu and the Help menu.

Be sure that the accelerator key you assign to a menu is unique. If you assign a
key that conflicts with another menu accelerator key, Windows Help displays an
“Unable to add menu” error message and ignores the macro.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem,
EnableItem, InsertItem, UncheckItem

IsMark
Tests whether a marker set by the SaveMark macro exists. Use this macro as a
parameter to the conditional macros IfThen and IfThenElse. The IsMark macro
returns nonzero if the marker exists or zero if it does not.

Example

Comments

See Also

Help Macro Reference§ 15-39

IsMark("marker-text")

Parameter Description

marker-text Marker text tested by the IsMark macro. The marker text must be
enclosed in quotation marks.

The following macro jumps to the topic with the “man_mem” context string if the
SaveMark macro has set a marker named Managing Memory. The IsMark
macro tests for the Managing Memory marker:

IfThen(IsMark("Managing Memory"), "JI(`trb.hlp', `man_mem')")

Use the Not macro to reverse the results of the IsMark macro.

DeleteMark, GotoMark, IfThen, IfThenElse, Not, SaveMark

JumpContents
Executes a jump to the Contents topic of a specified Help file. The Contents topic
is defined by the CONTENTS option in the [OPTIONS] section of the Help

project file.

JumpContents("filename")

Syntax

Example

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide
Parameter Description

filename Name of the destination Help file for the jump. The filename must
be enclosed in quotation marks.

The following macro jumps to the Contents topic of the PROGMAN.HLP file:

JumpContents("progman.hlp")

If the Help project file does not have a CONTENTS option, Help displays the
first topic in the first RTF file specified in the [FILES] section of the Help project
file.

If Windows Help cannot find the specified Help file, it displays an error message
and does not perform the jump.

Windows Help ignores this macro if it is executed in a secondary window.

Contents, SetContents

JumpContext (or JC)
Executes a jump to a specific context within a Help file. The context is identified
by an entry in the [MAP] section of the Help project file.

Example

Comments

See Also

Help Macro Reference§ 15-41

JumpContext("filename", context-number)

JC("filename", context-number)

Parameter Description

filename Name of the destination Help file for the jump. The filename must
be enclosed in quotation marks.

context-number Context number of the topic in the destination Help file. The
context number must be defined in the [MAP] section of the
destination Help file’s project file.

The following macro jumps to the topic mapped to the “801” context ID number
in the PIFEDIT.HLP file:

JumpContext("pifedit.hlp", 801)

Use regular context jumps (double underlining, context string in hidden text) for
jumps within the Help file rather than the JumpContext macro.

If Windows Help cannot find the specified Help file, it displays an error message
and does not perform the jump.

If the context number does not exist or cannot be found in the [MAP] section,
Windows Help jumps to the Contents topic or the first topic in the Help file and
displays an error message. (For more information about context numbers, see

“[MAP] Section” in Chapter 16, “The Help Project File.”)

JumpId, PopUpContext

Syntax

Example

Comments

See Also

 Microsoft Windows Help Authoring GuideJumpHelpOn
Executes a jump to the Contents topic of the How To Use Help file, which is
either WINHELP.HLP (provided with Windows Help version 3.1) or the Help
file designated by the SetHelpOnFile macro in the [CONFIG] section of the

Help project file.

JumpHelpOn()

Parameter Description

none

If Windows Help cannot find the specified Help file, it displays an error message

and does not perform the jump.

HelpOn, SetHelpOnFile

JumpId (or JI)
Executes a jump to the topic with the specified context string in the specified
Help file. Unlike the JumpContext macro, this macro does not require the topic
to be defined in the [MAP] section because it takes the topic context string (as
defined in the # footnote) as the second parameter.

Syntax

Comments

See Also

Help Macro Reference§ 15-43

JumpId("filename", "context-string")

JI("filename", "context-string")

Parameter Description

filename Name of the Help file containing the context string. The filename
must be enclosed in quotation marks.

context-string Context string of the topic in the destination Help file. The context
string must be enclosed in quotation marks.

The following macro jumps to a topic with the “groups_how_pm” context string
in the PROGMAN.HLP file:

JumpId("progman.hlp", "groups_how_pm")

If Windows Help cannot find the specified Help file, it displays an error message
and does not perform the jump.

If the context string does not exist, Windows Help jumps to the Contents topic for
that Help file. (For more information about context strings, see “Inserting Context
Strings” in Chapter 6, “Creating Topics.”)

You can use the JumpId macro to display topics in secondary windows by
adding the window name to the filename parameter, as in this example:
JumpId("progman.hlp>proc", "groups_how_pm")

The topic identified by the “groups_how_pm” context string would appear in the
“proc” secondary window.

If you use the JumpId macro without specifying a filename, Help performs the
jump in the current Help file, as in this example:

Syntax

Example

Comments

 Microsoft Windows Help Authoring Guide

JumpId("", "groups_how_pm")

This method is not recommended, but it may be helpful under certain
circumstances (for example, you repeat the macro many times in the same Help

file and you want to save disk space).

JumpContext, PopupId

JumpKeyword (or JK)
Opens the indicated Help file, searches through the K keyword table, and

displays the first topic containing the keyword specified in the macro.

JumpKeyword("filename", "keyword")
JK("filename", "keyword")

Parameter Description

filename Name of the Help file containing the desired keyword table. The
filename must be enclosed in quotation marks.

keyword Keyword that the macro passes to Help to search for. The
keyword must be enclosed in quotation marks.

The following macro displays the first topic that has “hands” as a keyword in the
CLOCK.HLP file:

See Also

Syntax

Example

Help Macro Reference§ 15-45

JumpKeyword("clock.hlp", "hands")

If Windows Help cannot find the specified Help file, it displays an error message
and does not perform the jump.

If Windows Help finds more than one keyword match, it displays the first
matched topic. If it does not find any matches, it displays a “Not a keyword”

message and displays the Contents topic of the destination Help file.

Search

Next
Displays the next topic in the browse sequence for the Help file. Executing this

macro is the same as choosing the Browse next button (>>).

Next()

Parameter Description

none

If the currently displayed topic is the last topic in a browse sequence, this macro
does nothing.

Comments

See Also

Syntax

Comments

 Microsoft Windows Help Authoring Guide

Windows Help ignores this macro if it is executed in a secondary window.

BrowseButtons, Previous

Not
Reverses the result (nonzero or zero) returned by the IsMark macro. Use it with
the IsMark macro as a parameter to the conditional macros IfThen and

IfThenElse.

Not(IsMark("marker-text"))

Parameter Description

marker-text Text marker previously created by the SaveMark macro. The
IsMark macro tests the marker you specify. The Not macro
returns zero if the mark exists (IsMark returns nonzero) or
nonzero if the mark does not exist (IsMark returns zero). The
marker text must be enclosed in quotation marks.

The following macro executes a jump to the topic with the “exp_mem” context
string if the SaveMark macro has not set a marker named Managing Memory:

IfThen(Not(IsMark("Managing Memory")), "JI(`trb.hlp', `exp_mem')")

DeleteMark, GotoMark, IfThen, IfThenElse, IsMark, SaveMark

See Also

Syntax

Example

See Also

Help Macro Reference§ 15-47PopupContext (or PC)
Displays in a pop-up window a topic identified by a specific context number. An

entry in the [MAP] section of the Help project file identifies the context.

PopupContext("filename", context-number)
PC("filename", context-number)

Parameter Description

filename Name of the Help file that contains the topic to be displayed in the
pop-up window. The filename must be enclosed in quotation
marks.

context-number Context number of the topic to be displayed in the pop-up
window. The context number must be defined in the [MAP]
section of the specified Help file’s project file.

The following macro displays in a pop-up window the topic mapped to the “801”
context ID number in the PIFEDIT.HLP file:

PopupContext("pifedit.hlp", 801)

If Windows Help cannot find the specified Help file, it displays an error message.

If the context number does not exist or cannot be found in the [MAP] section,
Windows Help displays the Contents topic or the first topic in the Help file. (For
more information about context numbers, see “[MAP] Section” in Chapter 16,
“The Help Project File.”)

Syntax

Example

Comments

 Microsoft Windows Help Authoring Guide

JumpContext

PopupId (or PI)
Displays in a pop-up window the topic with a specified context string in a
specified Help file. Unlike the PopupContext macro, this macro does not require
the topic to be defined in the [MAP] section because it takes the topic context

string (as defined in the # footnote) as the second parameter.

PopupId("filename", "context-string")
PI("filename", "context-string")

Parameter Description

filename Name of the Help file containing the pop-up window topic. The
filename must be enclosed in quotation marks.

context-string Context string of the topic in the destination Help file. The context
string must be enclosed in quotation marks.

The following macro displays in a pop-up window a topic identified by the
“019_eg_pm” context string in the PROGMAN.HLP file:

PopupId("progman.hlp", "019_eg_pm")

If Windows Help cannot find the specified Help file, it displays an error message.

See Also

Syntax

Example

Comments

Help Macro Reference§ 15-49

If the context string does not exist or cannot be found, Windows Help displays
the Contents topic or the first topic in the Help file. (For more information about

context strings, see “Inserting Context Strings” in Chapter 6, “Creating Topics.”)

JumpId

PositionWindow (or PW)
Sets the size and position of either the main Help window or a secondary

window.

PositionWindow(x-coord, y-coord, width, height, window-state,
"window-name")
PW(x-coord, y-coord, width, height, window-state, "window-name")

Parameter Description

x-coord X-coordinate, in Help units, of the upper-left window corner.
Positions are defined in terms of Windows Help’s 1024-by-1024
coordinate system, regardless of screen resolution. For example, if
the x-coordinate is 512, the left edge of the Help window is in the
middle of the screen. (For more information about determining
actual coordinates for different video resolutions, see “Secondary
Windows” in Chapter 9, “Defining Topic Windows.”)

y-coord Y-coordinate, in Help units, of the upper-left window corner.

width Default width, in Help units, of the window.

See Also

Syntax

 Microsoft Windows Help Authoring Guideheight Default height, in Help units, of the window.

window-state Specifies the window’s state when it is displayed. This parameter
is passed to the Windows ShowWindow function, which
determines how the window is to be shown. The values for the
ShowWindow function are explained in the following table. If the
window is maximized (value=3), Windows Help ignores the x-
coord, y-coord, width, and height parameters.

Value Constant Action

0 SW_HIDE Hides the window and passes
activation to another window.

1 SW_SHOWNORMAL Activates and displays a window.
If the window is minimized or
maximized, Windows restores it to
its original size and position (same
as SW_RESTORE).

2 SW_SHOWMINIMIZED Activates a window and displays it
as an icon.

3 SW_SHOWMAXIMIZED Activates a window and displays it
as a maximized window.

4 SW_SHOWNOACTIVATE Displays a window in its most
recent size and position. The
window that is currently active
remains active.

5 SW_SHOW Activates a window and displays it
in its current size and position.

Help Macro Reference§ 15-516 SW_MINIMIZE Minimizes the specified window
and activates the top-level window
in the system’s list.

7 SW_SHOWMINNOACTIVE Displays a window as an icon. The
window that is currently active
remains active.

8 SW_SHOWNA Displays a window in its current
state. The window that is currently
active remains active.

9 SW_RESTORE Activates and displays a window.
If the window is minimized or
maximized, Windows restores it to
its original size and position (same
as SW_SHOWNORMAL).

window-name Name of the window to position. The name “main” is reserved for
the primary Help window. Secondary window names are defined
in the [WINDOWS] section of the Help project file. This name
must be enclosed in quotation marks.

The following macro displays and positions the Samples secondary window in
the upper-left corner (100, 100) with a width and height of 500 in Help units:

PositionWindow(100, 100, 500, 500, 5, "Samples")

If the window to be positioned does not exist, Windows Help ignores the macro.

Microsoft does not guarantee platform independence for the ShowWindow
function because the values are Windows constants. Therefore, they may change
on other platforms.

Example

Comments

 Microsoft Windows Help Authoring Guide

CloseWindow, FocusWindow

Prev
Displays the previous topic in the browse sequence for the Help file. Executing

this macro is the same as choosing the Browse previous button (<<).

Prev()

Parameter Description

none

If the currently displayed topic is the first topic in a browse sequence, this macro
does nothing.

Windows Help ignores this macro if it is executed in a secondary window.

BrowseButtons, Next

Print
Sends the currently displayed topic to the printer.

See Also

Syntax

Comments

See Also

Help Macro Reference§ 15-53

Print()

Parameter Description

none

Use this macro only to print topics in windows other than the main Help window.
For example, use it to print topics displayed in secondary windows provided no
dialog boxes are open at the time of printing.

Using this macro in secondary windows is highly recommended because it is the
only way that a user can print the text in a secondary window.

If the Print macro executes from a pop-up window, the topic that contains the
pop-up hot spot is printed rather than the topic that is displayed in the pop-up
window.

PrinterSetup
Displays the Print Setup dialog box. Executing this macro is the same as choosing

the Print Setup command on the File menu.

PrinterSetup()

Parameter Description

none

Syntax

Comments

Syntax

 Microsoft Windows Help Authoring Guide

RegisterRoutine (or RR)
Registers a function within a dynamic-link library (DLL) as a Help macro.
Registered functions can be used in macro hot spots or footnotes within topic files
or in the [CONFIG] section of the Help project file, the same as standard Help
macros.

Note

The RegisterRoutine macro ignores all return values.

RegisterRoutine("DLL-name", "function-name", "parameter-spec")
RR("DLL-name", "function-name", "parameter-spec")

Parameter Description

DLL-name String specifying the filename of the DLL being called. The
filename must be enclosed in quotation marks. You can omit
the .DLL filename extension.

Specify the directory only if necessary. Generally, DLLs are
installed in the directory where Windows Help resides. For more
information, see “How Help Locates .DLL and .EXE Files” in
Chapter 14, “Help Macros.”

function-name String specifying the name of the function you want to use as a
Help macro. The function name must be enclosed in quotation
marks.

parameter-spec String specifying the formats of parameters passed to the function.
Characters in the string represent C parameter types. Valid
parameter types include the following:

Syntax

Help Macro Reference§ 15-55Character Data type Equivalent Windows data type

u Unsigned short integer UINT, WORD, WPARAM

U Unsigned long integer DWORD

i Signed short integer BOOL (also C int or short)

I Signed long integer LONG, LPARAM, LRESULT

s Near pointer to a null-
terminated text string

PSTR, NPSTR

S Far pointer to a null-
terminated text string

LPSTR, LPCSTR

v Void (means no type;
used only with return
values)

None. Equivalent to C void data
type.

The parameter-spec must be enclosed in quotation marks.
Windows Help checks the format string to ensure that it matches
the function prototype defined in the DLL.

To determine the data type of the function’s parameters, consult the application
programming interface (API) documentation for the DLL, or ask the person who

 Microsoft Windows Help Authoring Guide

developed the DLL. When using Windows functions with Windows Help, be sure
that you fully understand how the function will affect Help. For information on
Windows functions, their parameters, and parameter types, see the Microsoft

Windows version 3.1 Software Development Kit.

The following DLL call registers a routine named PlayAudio in the DLL named
HELPLIB.DLL:

RegisterRoutine("helplib", "PlayAudio", "SIU")

If Windows Help cannot find the DLL, it displays an error message and does not
perform the call. When loading DLLs, Help looks for a routine first in the
directory from which Help was started. Therefore, WINHELP.EXE can be
located anywhere–even on a drive not on the user’s machine–and Help will look
for DLLs in that directory first. Generally, it is not a good idea to place
application-specific DLLs in the Windows directory or in the Windows SYSTEM
directory.

RemoveAccelerator (or RA)
Removes an accelerator keyboard (access) key or key combination assigned to a

Help macro.

RemoveAccelerator(key, shift-state)
RA(key, shift-state)

Parameter Description

key Windows virtual-key value assigned to the macro using the
AddAccelerator macro. For the list of virtual keys, see Appendix
A, “Windows Virtual-Key Codes.”

Example

Comments

Syntax

Help Macro Reference§ 15-57shift-state Number specifying the key or key combination to use with the
accelerator key. Valid modifier keys are ALT, SHIFT, and CTRL.

Number Modifier key(s)

0 (No modifier key)

1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 ALT+SHIFT+CTRL

The following macro removes the ALT+CTRL+F10 key combination that was
assigned in the AddAccelerator macro example:

RemoveAccelerator(0x79, 6)

Windows Help does not display an error message if the author attempts to

remove an unassigned accelerator key.

AddAccelerator

SaveMark
Saves the location of the currently displayed topic and Help file and associates a
text marker with that location. The GotoMark macro can then be used to jump to

Example

Comments

See Also

 Microsoft Windows Help Authoring Guide

this location.

SaveMark("marker-text")

Parameter Description

marker-text Text marker used to identify the topic location. The marker text
must be enclosed in quotation marks, and it must be unique.

The following macro saves the Managing Memory marker in the current topic in
the Troubleshooting Help file:

SaveMark("Managing Memory")

Text markers are not saved if the user exits and then restarts Windows Help.

If you use the same text for more than one marker, Windows Help uses the most

recently entered marker.

DeleteMark, GotoMark, IfThen, IfThenElse, IsMark, Not

Search
Displays the Search dialog box, which allows users to search for topics using
keywords defined in K footnotes. Executing this macro is the same as choosing
the Search button.

Syntax

Example

Comments

See Also

Help Macro Reference§ 15-59

Search()

Parameter Description

none

Windows Help ignores this macro if it is executed in a secondary window.

JumpKeyword

SetContents

Designates a specific topic as the Contents topic in the specified Help file.

SetContents("filename", context-number)

Parameter Description

filename Name of the Help file that contains the desired Contents topic.
The filename must be enclosed in quotation marks.

context-number Context number of the topic in the specified Help file. The context
number must be defined in the [MAP] section of the destination

Syntax

Comments

See Also

Syntax

 Microsoft Windows Help Authoring Guide

Help file’s project file.

The following macro sets the topic mapped to the “101” context ID number in the
PROGMAN.HLP file as the Contents topic:
SetContents("progman.hlp", 101)

After this macro executes, choosing the Contents button causes a jump to the

topic mapped to 101.

If Windows Help cannot find the Help file, it displays an error message and does
not perform the jump.

If the context number does not exist or cannot be found in the [MAP] section,
Windows Help displays an error message. (For more information about context

numbers, see “[MAP] Section” in Chapter 16, “The Help Project File.”)

Contents, JumpContents

SetHelpOnFile
Designates the Help file that is to replace WINHELP.HLP, the How To Use Help
file provided with Windows Help version 3.1. The replacement file opens when

the user chooses the How To Use Help command or presses F1 in Windows Help.

SetHelpOnFile("filename")

Example

Comments

See Also

Syntax

Help Macro Reference§ 15-61
Parameter Description

filename Name of the replacement How To Use Help file. The filename
must be enclosed in quotation marks.

The following macro sets the How To Use Help file as QUIKHELP.HLP:
SetHelpOnFile("quikhelp.hlp")

To ensure that the How To Use Help file is always displayed in the main Help
window, add the window name “main” to the macro and place the macro in the
[CONFIG] section of the Help project file, as in this example:

[CONFIG]
SetHelpOnFile("quikhelp.hlp>main")

If Windows Help cannot find the Help file, it displays an error message.

If this macro appears within a topic in the Help file, the replacement Help file is
set after execution of the macro. If this macro appears in the [CONFIG] section
of the Help project file, the replacement Help file is set when the Help file is
opened.

If this macro is executed from a secondary window, the replacement file will
appear in the secondary window.

If you use this macro to replace the default How To Use Help file, executing the

HelpOn macro will display the custom version of How To Use Help.

HelpOn, JumpHelpOn

Example

Comments

See Also

 Microsoft Windows Help Authoring GuideUncheckItem (or UI)
Removes the check mark from a menu item added to a Windows Help menu with
the CheckItem macro. The check mark indicates the state of a toggle-type

command: on or off, show or hide, and so on.

UncheckItem("item-id")
UI("item-id")

Parameter Description

item-id Identifies the menu item to uncheck. Use the identifier assigned to
the item in the AppendItem macro. The item ID must be enclosed
in quotation marks.

The following macro removes the check mark from the menu item identified by
“time_item”:

UncheckItem("time_item")

To check a menu item, use the CheckItem macro.

Windows Help ignores this macro if it is executed in a secondary window.

AppendItem, ChangeItemBinding, CheckItem, DeleteItem, DisableItem,
EnableItem, InsertItem, InsertMenu

Ó 1993 Microsoft Corporation, All rights reserved

Syntax

Example

Comments

See Also

Help Macro Reference§ 15-63

 Microsoft Windows Help Authoring Guide

Help Macro Reference§ 15-65

	Help Macro Reference
	Macro Reference

